Vitamins Mix

Enzymes are proteins that facilitate specific chemical reactions. After completion of the reaction, the enzyme disassociates and becomes available to assist in further reactions. Although animals and their associated gut microflora produce numerous enzymes, they are not necessarily able to produce sufficient quantities of specific enzymes or produce them at the right locations to facilitate absorption of all components in normal feedstuffs or to reduce anti-nutritional factors in feed that limit digestion.
Some cereal grains (rye, barley, wheat, sorghum) have soluble long chains of sugar units (referred to as soluble non-starch polysaccharides – NSP) that can entrap large amounts of water during digestion and form very viscous (thick gel-like) gut contents. Enzymes that are harvested from microbial fermentation and added to feeds can break these bonds between sugar units of NSP and significantly reduce the gut content viscosity. Lower viscosity results in improved digestion as there is more interaction of the digestive enzymes with feeds and therefore more complete digestion; improved absorption as there is better contact between the digested feed nutrients and the absorptive surface of the gut; and improved health as the moisture and nutrient levels in the manure are reduced which reduces the nutrients available for harmful gut microflora to proliferate and challenge the birds (e.g. necrotic enteritis, a chronic intestinal disease caused by Clostridium perfringens, resulting in reduced performance, mortality and the main reason we currently use in-feed antimicrobials).
Commercial enzymes are also produced that significantly reduce the negative effects of phytates. Phytates are plant storage sources of phosphorus that also bind other minerals, amino acids (proteins) and energy and reduce their availability to the bird. Ongoing research will develop enzymes that are more effective in maintaining function under a wider range of processing and digestive conditions. New enzymes may include those capable of reducing toxins produced during feed spoilage (mould growth in grains) and facilitating digestion of carbohydrates currently not available to simple-stomached animals (poultry, pigs, humans) such as cellulose, lignin and chitin. New feed additives are rapidly adopted by the poultry industry and have facilitated the development of significant new technology to advance the use and availability of in-feed enzymes.